NCERT Solutions for Class 10 Maths Chapter 4 Quadratic Equations Exercise 4.2 Assamese Medium
দশম শ্ৰেণীৰ গণিতৰ সমাধানঃ চতুৰ্থ অধ্যায় দ্ধিঘাত সমীকৰণ । অনুশীলনী 4.2
Exercise 4.2 (অনুশীলনী 4.2)
Class 10 Maths Exercise 4.2 Question 1 Soilutions in Assamese Class
1. উৎপাদীকৰণ পদ্ধতিৰে তলৰ দ্বিঘাত সমীকৰণবোৰৰ মূলবোৰ উলিওৱা ।
C
(i)
x2 – 3x – 10 = 0
সমাধানঃ
(ii)
2x2 + x – 6 = 0
সমাধানঃ
সমাধানঃ
সমাধানঃ
এতিয়া,
(v) 100x2 - 20x + 1 = 0
সমাধানঃ
এতিয়া,
(vi)
2x2 – 7x + 6 = 0
সমাধানঃ
এতিয়া,
(vii)
X2 – 10x -96 = 0
সমাধানঃ
এতিয়া,
(viii)
√3x2 + 10x + 7√3 = 0
সমাধানঃ
এতিয়া,
(ix)
x2+
2√2x+ 2 = 0
সমাধানঃ
এতিয়া,
(x) 14x + 5 - 3x2 = 0
সমাধানঃ
এতিয়া,
2.
উদাহৰণ
1 ত দিয়া সমস্যা দুটা সমাধান কৰা ।
উদাহৰণ 1: তলৰ অৱস্হিথি কেইটাৰ গাণিতিক ভাৱে প্ৰদৰ্শন কৰাঃ
(i) জন আৰু জিয়ন্তী দুয়োৰে 45 টা মাৰ্বল আছে । তেওঁলোকৰ প্ৰত্যকে 5 টাকৈ মাৰ্বল হেৰালে আৰু এতিয়া তেওঁলোকৰ হাতত থকা মাৰ্বলৰ সংখ্যাৰ গুণফল 124 । আমি উলিয়াব লাগে, আৰাম্ভণিতে তেওঁলোকৰ কেইটাকৈ মাৰ্বল আছিল ।
(ii) এটা কুটীৰ শিল্পই এদিনত এটা নিৰ্দিষ্ট সংখ্যক পুতলা তৈয়াৰ কৰে । দোখাগ’ল যে প্ৰতিটো পুতলা উৎপাদানৰ খৰছ (টকাত) 55 বিয়োগ এদিনত উৎপাদিত পুতলাৰ সংখ্যা । এটা বিশেষ দিনত সমুদায় উৎপাদানৰ খৰচ আছিল 750 । আমি নিৰ্ণয় কৰিব লাগে সিদিনাখন উৎপাদান হোৱা পুতলাৰ সংখ্যা কিমান ।
সমাধানঃ
(i)
ধৰোঁ,
জনৰ মাৰ্বলৰ সংখ্যা = x
জিয়ন্তী মাৰ্বলৰ সংখ্যা = 45 - x
জানে যেতিয়া 5 টা মাৰ্বল হেৰায় তেওঁৰ হাতত ৰোৱা
মাৰ্বলৰ সংখ্যা = x–
5
জিয়ন্তী যেতিয়া 5 টা মাৰ্বল হেৰায়, তেওঁৰ হাতত
ৰোৱা মাৰ্বলৰ সংখ্যা,
= 45 –
x
–
5
= 40 -
x
সিহঁতৰ গুণফল,
= (x – 5) (40-x)
= 40x – x2 – 200 + 5x
= -x2 +45x -200
প্ৰশ্নমতে,
-x2 +45x
-200 = 124
⇒ - x2 + 45x – 200 – 124 = 0
⇒ - x2 + 45x – 324 = 0
⇒ x2
- 45x + 324
= 0
গতিকে জনৰ হাতত থকা মাৰ্বলৰ সংখ্যাই x2 - 45x + 324
= 0
দ্ধিঘাত সমীকৰণটো সিদ্ধ কৰে, যিটো সমীকৰণ সমস্যাটোৰ গাণিতিকভাবৱে দেখুৱাবলগীয়া নিৰ্নেয়
প্ৰদৰ্শন ।
আকৌ,
x2 - 45x + 324 = 0
⇒ x2 – (9+36)x + 324 = 0
⇒ x2
– 9x–36x + 324 = 0
⇒ x(x– 9)–36(x
+ 9) = 0
⇒ (x– 9)
(x –36) = 0
⇒ x– 9 =
0 আৰু x –36 =
0
∴ x = 9 আৰু x = 36
∴ নিৰ্ণেয় মূল x = (9,36)
(ii)
ধৰোঁ, নিৰ্দিষ্ট দিনত উৎপাদান পুতলাৰ সংখ্যা = x
প্ৰতিটো
পুতলাৰ নিৰ্দিষ্ট দিনত উৎপাদান খৰচ(টকাত) = 55 - x
গতিকে নিৰ্দিষ্ট দিনত উৎপাদানৰ
মুঠ খৰচ (টকাত) = x (55
- x)
প্ৰশ্নমতে,
x(55-x) = 750
⇒55x – x2 = 750
⇒ – x2+55x
– 750 = 0
⇒ x2 – 55x
+ 750 = 0
গতিকে নিৰ্দিষ্ট দিনত উৎপাদিত পুতলাৰ সংখ্যাই x2
– 55x + 750 = 0 দ্বিঘাত
সমীকৰণটো সিদ্ধ কৰে, যিটো সমীকৰণ সমস্যাটোৰ গাণিতিক
ভাৱে দেখুৱাবলগীয়া নিৰ্ণয় প্ৰৰ্শন।
আকৌ, x2 – 55x + 750 = 0
⇒ x2 – (25+30)x + 750 = 0
⇒ x2 – 25x–30x + 750 = 0
⇒ x(x – 25)–30(x –25) = 0
⇒ (x – 25)(x –30) = 0
⇒ x – 25 =0 আৰু x
–30 = 0
∴ x = 25 আৰু x = 30
∴ নিৰ্ণেয় মূল x = (25,30)
3.
দুটা সংখ্যা
উলিওৱা যাৰ সমষ্টি 27 আৰু গুণফল 182।
সমাধানঃ
ধৰোঁ, প্ৰথম সৰু সংখ্যাটো = x
∴ দ্বিতীয় ডাঙৰ সংখ্যাটো হব = 27 - x
প্ৰশ্নমতে,
4.
দুটা
ক্ৰমিক যোগাত্মক সংখ্যা উলিওৱা যাৰ বৰ্গৰ যোগফল 365 ।
সমাধানঃ
ধৰোঁ ক্ৰমিক যোগাত্মক সংখ্যা x আৰু
x
+ 1
প্ৰশ্নমতে,
যিহেতু প্ৰশ্নমতে সংখ্যাকেইটা যোগাত্মক ।
∴
x = -14 ক
বাদ দিয়া হল ।
∴ নিৰ্ণয় দুটা ক্ৰমিক যোগাত্মক সংখ্যা হল 13 আৰু 14
5.
এটা সমকোণী ত্ৰিভূজৰ উচ্চতা ইয়াৰ ভূমিতকৈ
7চে.মি. কম । যদি অতিভূজটো 13 চে.মি. অইন বাহু দুটা উলিওৱা ।
সমাধানঃ
ধৰোঁ,
সমকোণী ত্ৰিভূজটোৰ ভূমি =
x চে.মি.
সমকোণী
ত্ৰিভূজটোৰ উচ্চতা = (x – 7) চে.মি.
দিয়া আছে, সমকোণী ত্ৰিভূজটোৰ অতিভূজ = 13 চে.মি.
অইন বাহু দুটা মানে ভূমি আৰু উচ্চতা উলিয়াব লাগে
।
প্ৰশ্নমতে,
এতিয়া,
⇒ x – 12 = 0 আৰু x + 5 = 0
⇒ x = 12 আৰু x = - 5
যিহেতু ত্ৰিভূজৰ বাহুৰ
জোখ সদায় ধনাত্মক
∴
x = - 5 ক বাদ দিয়া হল ।
∴ নিৰ্ণয় অইন দুটা বাহু 12 চে.মি. আৰু 12–7 = 5 চে.মি.
6. এটা কুটীৰ শিল্পই দৈনিক এটা নিৰ্দিষ্ট সংখ্যক মাটিৰ বাচন তৈয়াৰ কৰে । এদিন দেখা গল যে প্ৰতিটো বস্তৰ উৎপাদানৰ খৰছ (টকাত) সিদিনাৰ উৎপাদিত বস্তৰ সংখ্যাৰ দুগুণতকৈ 3 বেছি । যদি সিদিনা উৎপাদানৰ মুঠ ব্যয় 90 টকা, উৎপাদিত বস্তৰ সংখ্যা আৰু প্ৰতিটো বস্তৰ ব্যয় কিমান হব উলিওৱা ।
সমাধানঃ
ধৰোঁ,
প্ৰতিটো উৎপাদিত বস্তৰ সংখ্যা =
x
∴
প্ৰতিটো বস্তৰ ব্যয় = 2x + 3
প্ৰশ্নমতে,
এতিয়া,
যিহেতু বস্তৰ সংখ্যা সদায় ধনাত্মক |
∴
উৎপাদিত বস্তৰ
সংখ্যা
= 6
∴
প্ৰতিটো বস্তৰ ব্যয় =
2x + 3
= 2 × 6 + 3
=
12 + 3
= 15 টকা
Published By Abhiman Das
Class 10 Maths Assamese Medium questions Answer
Class 10 Assamese medium All Book solutions in Assamese Medium. Class 10 Mathematics soutions in Assamese Medium. Class 10 Mathematics Chapter 4 solution in Assamese Medium Class 10 Maths Assamese Medium.