Class 11 Maths Chapter 1 Sets Exercise 1.5 Solutions in English Medium

Sudev Chandra Das

Class 11 Maths Chapter 1 Sets Exercise 1.5 Solutions in English Medium



Free  NCERT Solutions for Class 11 Math’s Chapter 1 Sets Exercise 1.1, Exercise 1.2, Exercise 1.3, Exercise 1.4, Exercise 1.5, Exercise 1.6 and Miscellaneous Exercise in English Medium for CBSE.

 

NCERT Maths Class 11 Sets. Just click on the Exercise wise links given below to practice the Maths solutions for the respective exercise.


SETSSolutions Link
Exercise 1.1Click here
Exercise 1.2Click here
Exercise 1.3Click here
Exercise 1.4Click here
Exercise 1.5Click here
Exercise 1.6Click here







 

 


EXERCISE : 1.5

 Exercise 1.5 Class 11 Maths Question 1

        1.   Let U = { 1, 2, 3, 4, 5, 6, 7, 8, 9 },  A = { 1, 2, 3, 4 },  B = { 2, 4, 6, 8 } and C = { 3, 4, 5, 6 } . Find

(i) A/  (ii) B/  (iii) ( A  ∪ C )/  (iv) ( A ∪ B )/    (v) ( A/ )/   (vi) ( B – C )/

Solution:-

It is given that,

U = {1, 2, 3, 4, 5, 6, 7, 8, 9}

A = {1, 2, 3, 4}

B = {2, 4, 6, 8} and

C = {3, 4, 5, 6 } .

(i)                           A/ = { 5, 6, 7, 8, 9 }

(ii)                         B/  = { 1, 3, 5, 7, 9 }

(iii)                     A  ∪ C  = { 1, 2, 3, 4, 5, 6 }

∴ (A ∪ C)/   = {7, 8, 9}

 

(iv)                      A ∪ B    = { 1, 2, 3, 4, 6, 8 }

So, we get

(A∪ B)/ = {5, 7, 9} 

(v)                         ( A/ )/   = A = { 1, 2, 3, 4 }

(vi)                     B – C   = {2, 8 }

So we get

 (B – C )/ = { 1, 3, 4, 5, 6, 7, 9 }

 

Exercise 1.5 Class 11 Maths Question 2

       2.   If U = { a, b, c, d, e, f, g, h }, find the complements of the following sets :

(i)                          A = { a, b, c }

(ii)                       B = { d, e, f, g }

(iii)                     C = { a, c, e, g }

(iv)                     D = { f, g, h, a }

Solution:-

U = {a, b, c, d, e, f, g, h}

(i) A = {a, b, c}

A′={d, e, f, g, h}

(ii) B = {d, e, f, g}

∴B′={a, b, c, h}

(iii) C = {a, c, e, g}

∴C′={b, d, f, h}

(iv) D = {f, g, h, a}

∴D′={b, c, d, e}

 

 



Exercise 1.5 Class 11 Maths Question 3

    3.   Taking the set of natural numbers as the universal set, write down the complements of the following sets :

(i)                          { x : x is an even natural number }

(ii)                        { x : x is an odd natural number }

(iii)                     { x : x is n positive multiple of 3 }

(iv)                     { x : x is a prime number }

(v)                        { x : x is a natural number divisible by 3 and 5 }

(vi)                     { x : x is a perfect square }

(vii)                   { x : x is a perfect cube }

(viii)                { x : x + 5 = 8 }

(ix)                     { x : 2x + 5 = 9 }

(x)                        { x : x 7 }

(xi)                     { x : x  Ïµ N and 2x + 1 > 10 }

Solution:-

 We know that,

 U = N : set of Natural numbers

(i) Let A = {x : x   is an even natural number}

∴ A/ = U – A = U– {x : x   is an even natural number}

         = {x : x  is an odd natural number}

 

(ii) Let A = {x : x is an odd natural number}

∴ A/ = U – A = U- {x : x is an odd natural number}

        = {x : x is an even natural number}

 

(iii) Let A = {x : x  is a positive multiple of 3}

∴ A/ = U – A = U– {x : x  is a positive multiple of 3}

     = {x : x is not a positive multiple of 3}

 

(iv) Let A = {x : x  is a prime number}

∴ A/ = U – A = U– {x : x is a prime number}

= {x : x is not a prime number}

(v) Let A = {x : x  is a natural number divisible by 3 and 5}

   ∴ A/ = U – A = U– {x : x is a natural number divisible by 15}

= {x : x is not divisible by 15}

 

(vi) Let A = {x : x is a perfect square}

∴ A/ = U – A = U– {x : x is a perfect square}

= {x : x  is not a perfect square}

 

(vii) Let A = {x : x is a perfect cube}

∴A/ = U – A = u– {x : x is a perfect cube}

= {x : x is not a perfect cube}

 

(viii) Let A = {x : x  + 5 = 8} = {3}

To find the complement of {x : x+5 = 8}

X + 5=8

X =3

The complement of set A is the set of all elements of U which are not the elements of A.

∴{x : x+5 = 8 }/ ={x : x ∈ N and x≠3}

 

(ix) Let A = {x : 2x + 5 = 9 } = {2}

Given that,

The set of natural number is the universal set

To find the complement of the

{x : 2x+5=9}

The complement of set A is the set of all elements of U which are not the elements of A.

2x+5=9

2x=4

x=2

∴{x:2x+5=9}/ ={x:x∈N and x≠2 }

 

(x) Given that,

The set of natural number is the universal set

To find the complement of

{x : x ≥ 7 }

The complement of set A is the set of all elements of U which are not the elements of A.

∴{x : x≥ 7}/ ={ x : x ∈ N and x 7}

 

(xi) Given that,

The set of natural number is the universal set

To find the complement of the

{x : x ∈ N and 2x  + 110 }

The complement of set A is the set of all elements of U which are not the elements of A.

2x + 1 > 10

2x > 9

X > 92

∴{ x : x ∈ N and 2x + 110}/

  ={x : x ∈ N and x ≤92 }

 


Exercise 1.5 Class 11 Maths Question 4

       4.      If U = { 1, 2, 3, 4, 5, 6, 7, 8, 9 },  A = { 2, 4, 6, 8 } and B = { 2, 3, 5, 7 } . Verify that  

(i)                          ( A ∪ B )/ = A/ ∩ B/

(ii)                       ( A ∩ B )/ = A/ ∪ B )/

Solutions:-

Given: U = {1, 2, 3, 4, 5, 6, 7, 8, 9 },

A = {2, 4, 6, 8} and B = {2, 3, 5, 7}

(i) L.H.S. = (A ∪ B)/  = U – (A ∪ B)

= {1, 2, 3, 4, 5, 6, 7, 8, 9} – ({2, 4, 6, 8} ∪ {2, 3, 5, 7})

= {1, 2, 3, 4, 5, 6, 7, 8, 9} – {2, 3, 4, 5, 6, 7, 8} = {1, 9}

R.H.S. = A/ ∩ B/ = (U – A) ∩ (U – B)

= ({1, 2, 3, 4, 5, 6, 7, 8, 9} – {2, 4, 6, 8}) ∩ ({1, 2, 3, 4, 5, 6, 7, 8, 9} – {2, 3, 5, 7})

= {1, 3, 5, 7, 9} ∩ {1, 4, 6, 8, 9} = {1, 9}

L.H.S. = R. H. S.

(A∪B)/=A/∩ B/

 

(ii) L.H.S. = (A ∩ B)/

= U – (A ∪ B)

= {1, 2, 3, 4, 5, 6, 7, 8, 9} – ({2, 4, 6, 8} ∩ {2, 3, 5, 7})

= {1, 2, 3, 4, 5, 6, 7, 8, 9} – {2}

= {1, 3, 4, 5, 6, 7, 8, 9}

R.H.S. = A/ ∪ B/ = (U – A) ∪  (U – B)

= ({1, 2, 3, 4, 5, 6, 7, 8, 9} – {2, 4, 6, 8}) ∪ ({1, 2, 3, 4, 5, 6, 7, 8, 9} – {2, 3, 5, 7})

= {1, 3, 5, 7, 9} ∪ {1, 4, 6, 8, 9}

= {1, 3, 4, 5, 6, 7, 8, 9}

L.H.S. = R. H. S.

Hence it has been proved that (A∩B)/=A/ ∪ B/

 




Exercise 1.5 Class 11 Maths Question 5

        5.   Draw appropriate Venn diagram for each of the following :

(i)                          ( A ∪ B )/   

(ii)                       A/ ∩ B/

(iii)                     ( A ∩ B )/

(iv)                     A/ ∪ B/

Solutions:-

(i)                          ( A ∪ B )/ 

     

  (ii)    A/ ∩ B/
 

(iii)        ( A ∩ B )/

      

(iv)     A/ ∪ B/

     






       Exercise 1.5 Class 11 Maths Question 6

       6.   Let U be set of all triangles in a plane. If A is the set of all triangles with at least one angle different from 60° , what is A/ ?

Solution:- A/ is the set of all equilateral triangles .

 


Exercise 1.5 Class 11 Maths Question 7

        7.   Fill in the blanks to make each of the following a true statement :

(i)                A  ∪ A/ = . . . .

(ii)              Φ/ ∩ A = . . . .

(iii)            A ∩ A/ = . . . .

(iv)             U/ ∩ A = . . . . .

 


Solution:-

(i)                A  ∪ A/ =  ∪

(ii)              Φ/ ∩ A = ∪ ∩ A = A

       ∴ Φ/ ∩ A = A

(iii)            A ∩ A/ = Φ

(iv)             U/ ∩ A = Φ ∩ A = Φ

       ∴       U/ ∩ A = Φ




     Published  By Lokesh Das

Class 11 Maths  questions Answer.        



   More Resourses For Class 9 Solutions in Assamese Medium


NCERT textbook Solutions for class 10 Mathematics in Assanese medium.  We Solved solutions in  Assamese Medium  for Class 10 Mathematics. 


Our website uses cookies to enhance your experience. Learn More
Accept !