Class 11 Maths Chapter 1 Sets Exercise 1.4 Solutions in English Medium

Sudev Chandra Das

Class 11 Maths Chapter 1 Sets Exercise 1.4 Solutions in English Medium


Free NCERT Solutions for Class 11 Maths Chapter 1 Exercise 1.4 prepared by expert Mathematics teacher as per CBSE (NCERT) books guidelines.



Free  NCERT Solutions for Class 11 Math’s Chapter 1 Sets Exercise 1.1, Exercise 1.2, Exercise 1.3, Exercise 1.4, Exercise 1.5, Exercise 1.6 and Miscellaneous Exercise in English Medium for CBSE.

 

NCERT Maths Class 11 Sets. Just click on the Exercise wise links given below to practice the Maths solutions for the respective exercise.


SETSSolutions Link
Exercise 1.1Click here
Exercise 1.2Click here
Exercise 1.3Click here
Exercise 1.4Click here
Exercise 1.5Click here
Exercise 1.6Click here


 





Class 11 Maths Chapter 1 Sets Ex 1.4 Questions with Solutions to help you to revise complete Syllabus and Score More marks in your exams.



 

 

EXERCISE  1.4

 

1.                 Find the union of each of the following pairs of sets
:

(i)                        X = { 1, 3, 5 }              Y = { 1, 2, 3 }

(ii)                      A = [ a, e, I, o, u }       B = { a, b, c }

(iii)                    A = { x : x is a natural number and multiple of 3 }

B = { x : x is a natural number less than 6 }

(iv)                     A = { x : x is a natural number and 1 < x ≤ 6 }

B = { x : x is a natural number and 6 < x < 10 }

(v)                       A = { 1, 2, 3 } ,        B = Ï•

Solution:-

(i)                                      Given,

X = { 1, 3, 5 }    Y = { 1, 2, 3 }

  X  ∪ Y = { 1, 2, 3, 5 }

 

(ii)                                   Given,

A = [ a, e, I, o, u }       B = { a, b, c }

A  ∪ B = { a, b, c, e, I, o, u }

 

(iii)            Given,

 A = { x : x is a natural number and multiple of 3 }   B = { x : x is a natural number less than 6 }

So the union of pairs of set can be written as

          A  ∪ B = { 1, 2, 4, 5, 3, 6, 9, 12 …… }

 

(iv)     Given,

A = { x : x is a natural number and 1 < x ≤ 6 }

B = { x : x is a natural number and 6 < x < 10 }

So the union of pairs of set can be written as

          A  ∪ B = {  2, 3, 4, 5, 6, 7, 8, 9 }

 

(v)           Given,

A = { 1, 2, 3 } ,        B = Ï•

          A ∪ B = {  1, 2, 3,4 }

 

2.     Let A = { a, b },   B = { a, b, c } .  Is A ⊂ B ?  What is A ∪ B ?

Solution:-

Here, A = { a, b } and B = { x, y, z }

Yes , A ⊂ B.

A ∪ B = { a, b, c } = B

 

3.      If A and B are two sets such that A ⊂ B, then what is A ∪ B ?

Solution:-

If A and B are two sets such that A ⊂ B, then A ∪ B = B

 

4.                 If A = { 1, 2, 3, 4 }, B = { 3, 4, 5, 6 },  C = { 5, 6, 7, 8 } and D = { 7, 8, 9, 10 };  find

(i)                A ∪ B            

(ii)              A ∪ C

(iii)            B ∪ C

(iv)             B ∪ D

(v)               A ∪ B ∪ C

(vi)             A ∪ B ∪ D

(vii)           B ∪ C ∪ D

 

Solution:-

A = { 1, 2, 3, 4 }, B = { 3, 4, 5, 6 },  C = { 5, 6, 7, 8 } and D = { 7, 8, 9, 10 }

(i)                          A ∪ B = { 1, 2, 3, 4, 5, 6 }

(ii)                        A ∪ C = { 1, 2, 3, 4, 5, 6, 7, 8 }

(iii)                     B ∪ C  = { 3, 4, 5, 6, 7, 8 }

(iv)                     B ∪ D = {3, 4, 5, 6, 7, 8, 9, 10 }

(v)                       A ∪ B ∪ C = { 1, 2, 3, 4, 5, 6, 7, 8 }

(vi)                     A ∪ B ∪ D = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

(vii)                  B ∪ C ∪ D = { 3, 4, 5, 6, 7, 8, 9, 10 }

 

 

5.    Find the intersection of each pair of sets of question 1 above .

Solution:-

(i)                          X ∩ Y  = { 1, 3, 5 } ∩  { 1, 2, 3 } = { 1,3 }

(ii)                       A ∩ B = [ a, e, i, o, u }  ∩  { a, b, c } = { a }

(iii)                     A = { 3, 6, 9, 12, . . . . .}

B = { 1, 2, 3, 4, 5 }

A ∩ B { 3, 6, 9, 12, . . . . .}  ∩   { 1, 2, 3, 4, 5  } = { 3 }

 

(iv)                     A = { 2, 3, 4, 5, 6 }

B = { 7, 8, 9 }

A ∩ B = { 2, 3, 4, 5, 6 }  ∩ { 7, 8, 9 } = Ï•

 

(v)                       A = { 1, 2, 3 }  ∩   B = Ï• = Ï•

 

 

 

6.                 If A = { 3, 5, 7, 9, 11 } ,  B = { 7, 9, 11, 13 }, C = { 11, 13, 15 } and   D = { 15, 17 }; find

(i)                A ∩ B

(ii)              B ∩ C

(iii)            A ∩ C  ∩  D

(iv)             A  ∩ C

(v)               B ∩ D

(vi)             A ∩ (B  ∪ C )

(vii)            A  ∩  D

(viii)         A ∩ (B ∪ D )

(ix)             ( A ∩ B ) ∩ ( B ∪ C )

(x)               ( A ∪ D ) ∩ (B ∪ C )

Solution:-

(i)                A ∩ B = { 7, 9, 11 }

(ii)              B ∩ C = { 11, 13 }

(iii)            A ∩ C  ∩  D = { A ∩ C }  ∩ D = {11 } ∩ { 15, 17 } =  Ï•

(iv)             A ∩ C = {11 }

(v)               B ∩ D = Ï•

(vi)             A ∩ (B  ∪ C ) = ( A ∩ B ) ∪ = ( A ∩ C ) = { 7, 9, 11  } ∪  { 11 } = { 7, 9, 11  }

(vii)           A  ∩  D = Ï•

(viii)         A ∩ (B ∪ D ) = ( A ∩ B ) ∪  (A ∩ D) = { 7, 9, 11 } ∪ Ï• =  { 7, 9, 11 }

(ix)             ( A ∩ B ) ∩ ( B ∪ C ) = { 7, 9, 11 }  ∩  { 7, 9, 11, 13, 15 } = { 7, 9, 11 }  

(x)               ( A ∪ D ) ∩ (B ∪ C ) = { 3, 5, 7, 9, 11, 15, 17 ) ∩ { 7, 9, 11, 13, 15 } = { 7, 9, 11,  15 }

 

 

7.                 If A = { x : x is a natural number },  B = { x : x is a even natural number }  C = { x : x is an odd natural } and  D = { x : x is a prime number } , find

(i)                A ∩ B

(ii)              A ∩ C

(iii)            A ∩ D

(iv)             B ∩ C

(v)               B ∩ D

(vi)             C  ∩  D

Solution:-

 A = { x : x is a natural number} = { 1, 2, 3, 4, 5 …. }

B = { x : x is a even natural number }   = { 2, 4, 6, 8 }

C = { x : x is an odd natural }   = { 1, 3, 5, 7, 9 }

D = { x : x is a prime number }  = { 2, 3, 5, 7 … … .}

(i)                A ∩ B  = { x : x is a even natural number } = B

(ii)               A ∩ C = { x : x is an odd natural }  = C

(iii)             A ∩ D = { x : x is a prime number }  = D

(iv)             B ∩ C = Ï•

(v)               B ∩ D = { 2 }

(vi)             C  ∩  D = { x : x is an odd natural } 

 

 

8.                 Which of the following pairs of are disjoint

(i)                { 1, 2, 3, 4 } and { x : x is a natural number and 4 ≤ x ≤ 6 }

(ii)              { a, e, i, o, u } and { c, d, e, f }

(iii)            { x : x is an even integer }  and { x : x is an odd integer }

Solution:-

(i)                { 1, 2, 3, 4 }

{ x : x is a natural number and 4 ≤ x ≤ 6 } = { 4, 5, 6 }

Now, { 1,2, 3, 4 } ∩  { 4, 5, 6 } = { 4 }

Therefore, this pair of sets is not disjoint .

(ii)              { a, e, i, o, u }  ∩  { c, d, e, f } = { e }

Therefore, this pair of sets is not disjoint .

 

(iii)            { x : x is an even integer }  ∩ { x : x is an odd integer }  = Ï•

 

Therefore, this pair of sets is disjoint .

 

 

9.                 If A = { 3, 6, 9, 12, 15, 18, 21 }, B = { 4, 8, 12, 16, 20 } , B = { 4, 8, 12, 16, 20 },    C = { 2, 4, 6, 8, 10, 12, 14, 16 }, D = { 5, 10, 15, 20 }; find

(i)                A – B

(ii)              A – C

(iii)            A – D

(iv)             B – A

(v)               C – A

(vi)             D – A

(vii)           B – C

(viii)         B – D

(ix)             C – B

(x)               D – B

(xi)             C – D

(xii)           D – C

Solution:-

(i)                A – B  = { 3, 6, 9, 15, 18, 21 }

(ii)              A – C  = { 3, 9, 15, 18, 21}

(iii)            A – D  = { 3, 6, 9, 12, 18, 21 }

(iv)             B – A  = { 4, 8, 16, 20 }

(v)               C – A  = { 2, 4, 8, 10, 14, 16 }

(vi)             D – A  = { 5, 10, 20 }

(vii)           B – C  = { 20 }

(viii)         B – D  = { 4, 8, 12, 16 }

(ix)             C – B  = { 2, 6, 10, 14 }

(x)               D – B  = { 5, 10, 15 }

(xi)             C – D  = { 2, 4, 6, 8, 12, 14, 16 }

(xii)           D – C = { 5, 15, 20 }

 

10.           If X = { a, b, c, d } and  Y = { f, b, d, g }, find

(i)                X – Y

(ii)              Y – X

(iii)            X ∩ Y

Solution:-

(i)                X – Y = { a, c }

(ii)              Y – X = { f, g }

(iii)            X ∩ Y  = { b, d }

 

11.           If R is the set of real numbers and Q is the set of rational numbers, then what is R – Q ?

Solution:-

R : set of real numbers

Q : set of rational numbers

Therefore, R – Q is a set of rational numbers

 

 

12.           State whether each of the following statement is true or false. Justify your answer.

(i)                { 2, 3, 4, 5 } and { 3, 6} are disjoint sets.

(ii)              { a, e, I, o, u } and { a, b, c, d } are disjoint sets.

(iii)            { 2, 6, 10, 14 } and { 3, 7, 11, 15 } are disjoint sets.

(iv)             { 2, 6, 10 } and { 3, 7, 11 } are disjoint sets.

Solution:-

(i)                          False

As 3 ϵ { 2, 3, 4, 5 } , 3 ϵ { 3, 6 }

⇒  { 2, 3, 4, 5 } ∩ { 3, 6 } = { 3 }

 

(ii)              False

As a ϵ { a, e,  i, o,  u} , a ϵ { a, b, c, d }

⇒  {a, e,  i, o,  u } ∩ { a, b, c, d  } = { a }

 

(iii)            True

As { 2, 6, 10, 14 } ∩ { 3, 7, 11, 15 } = Ï•

 

(iv)             True

As { 2, 6, 10 } ∩ { 3, 7, 11 } = Ï• 







       More Resourses For Class 9 Solutions in Assamese Medium


NCERT textbook Solutions for class 10 Mathematics in Assanese medium.  We Solved solutions in  Assamese Medium  for Class 10 Mathematics. 


Our website uses cookies to enhance your experience. Learn More
Accept !