SEBA SCERT Solutions for Class 7 Maths Chapter 1 Integers Exercise 1.2

Sudev Chandra Das

SEBA SCERT Solutions for Class 7 Maths Chapter 1 Integers

 

SEBA SCERT Solutions for Class 7 Maths Chapter 1 Exercise 1.2 Integers in English and Assamese Medium modified and updated for academic year 2024-25. All the question-answers and solutions are revised on the basis of new syllabus and latest SEBA SCERT textbooks issued for curriculum 2024-25.

 



All the question answers with solutions are done according to latest SEBA SCERT Books for 2024-25.

 

Class 7 Maths Solutions: All the solutions can be viewed by clicking on the Solutions Link below.

 

Integers
Solutions Link
Exercise 1.1  Click Here
Exercise 1.2  Click Here
Exercise 1.3  Click Here


SEBA SCERT Solutions for Class 7 Maths Chapter 1 Integers Exercise 1.2

 

Class: 7-

Mathematics

Chapter: 1

Exercise 1.2

Session:

SEBA 2024 - 25

Medium:

English, Assamese & Hindi

 

follow us on

Instagram
Facebook
Subscribe Our YouTube Channel

 

 

SEBA SCERT Solutions for Class 7 Maths Chapter 1 Integers Exercise 1.2

Exercise -1.2

     1.    Find the product.

(i)      5× (-2)  

(ii) (-3) ×7

(iii) (-4) ×(-3)

(iv)  (-129) × (-1)  

(v) (-12) ×0×(-17)

(vi) (-22) ×(-11) ×10

(vii)  13×(-5) ×(-3)

(viii) (-27) ×(-31) ×(-2)

(ix) (-3) ×(-1) ×(-2) ×5

Solution:

(i)     5× (−2) =−10

(ii)   (−3) ×7=−21

(iii)  (−4) × (−3) =12

(iv)  (−129) × (−1) =129

(v)   (−12)×0×(−17)=0 (anything multiplied by 0 is 0)

(vi)  (−22) ×(−11)×10

        =22×11×10

        =2420

 

(vii)                   13×(−5)×(−3)

=13×15

=195

 

(viii)                 (−27)×(−31)×(−2)

=27×31×(−2)

=837×(−2)

=−1674

 

(ix)                      (−3)×(−1)×(−2)×5

=3×1×(−2)×5

=3×(−2)×5

=−6×5

=−30

 

     2.    Verify whether true or false.

(i) 27×{(−5) +10}=27×(−5) +27×10

(ii) (−25) ×{(−16)+( −24)}=( −25) ×(−16) ×( −24)

(iii) a– (–b) = a+b, where a = (–75), b = (–20)

Solution:

(i)  27×{(−5)+10}=27×(−5)+27×10

LHS = 27×{(−5)+10}

         =27×5

         =135

RHS = 27×(−5)+27×10

         =−135+270

         =135

Since LHS = RHS, the statement is true.

(ii) (−25)×{(−16)+(−24)}=(−25)×(−16)+(−25)×(−24)

LHS = (−25)×{(−16)+(−24)}

         = (−25)×(−40)

         =1000

RHS = ( −25) ×(−16) ×( −24)

         = 400×( −24)

         = −9600

The left-hand side is 1000, and the right-hand side is -9600

Since LHS ≠ RHS, the statement is false.

(iii)                     a−(−b)=a+b, where 𝑎 = (−75),  and 𝑏=(−20)

Substitute 𝑎 and b into the equation,

(−75)−(−(−20))

=(−75)+20

= −55

Simplify the equation,

(−75)+20

=−55

So, the statement is true.

     3.     (i) Product of any two integers −33. If one of them is 11, what is the other number?

(ii) Product of any two integers is 51. If one of them is −1, what is the other number?

(iii)  What is the value of (−1×a) for any integer ‘a’?

Solution:

(i) Let the other number = x

Given,

`11\times x\=\-33`

`\Rightarrow x=\frac{-33}{11}`

`\Rightarrow x=-3`

So, the other number is −3.

(ii)  Let the other number = x

Given,

`-1\times x=51`

`\Rightarrow x=51/(-1)`

`\Rightarrow x=-51`



(iii) For any integer 𝑎,

−1×a=−a

So, the value of (−1×𝑎) is −a, which is the negation of 𝑎

     4.    Find the product applying appropriate property –

(i)   125×(−54) ×8  

(ii) (−25) ×(−97) ×4

(iii)   (−27) ×(−33)

(iv) 25×(−58)+( −58) ×(−35)

(v)  15×(−25) ×(−4) ×(−10)  (vi) (−57) ×(−19) ×57

Solution:

(i)  125×(−54)×8

Using the associative property of multiplication

= (125×8)×(−54)

= 1000×(−54)

= −54000

So, the product is −54000

(ii) (−25)×(−97)×4

Using the associative property of multiplication

= (−25)×4×(−97)

= −100×(−97)

= 9700

So, the product is 9700.

(iii) (−27)×(−33)

= (−27)×(−33)

= 27×33

= 891

So, the product is 891.

(iv) 25×(−58)+(−58)×(−35)

Using the distributive property,

= 25×(−58)+(−58)×(−35)

= (−58)×{25+(−35)}

=(−58)×(−10)

= 580

So, the product is 580.

(v) 15×(−25)×(−4)×(−10)

Using the associative property of multiplication

= {15×(−25)}×(−4)×(−10)

= (−375)×(−4)×(−10)

= 1500×(−10)

= −15000

So, the product is −15000.

(vi)   (−57)×(−19)×57

Using the commutative and associative properties

(−57)×57×(−19)

=(−57×57)×(−19)

=−3249×(−19)

=3249×19

=61731

So, the product is 61731

     5.    Evaluate with the help of distributive and associative property:

(i)    125×(54) ×8  

(ii) (−25) ×75×8×(−4)

(iii)  225×67×3

Solution:

(i)                          125×54×8

Using the associative property of multiplication,

(125×8)×54

=1000×54

=54000

So, the product is 54000.

(ii)                        (−25)×75×8×(−4)

Using the associative property of multiplication,

[(−25)×(−4)]×(75×8)

=100×600

=60000

So, the product is 60000.

(iii)                     225×67×3

Using the associative property of multiplication,

225×(67×3)

=225×201

We can break this down using the distributive property,

225×201

=225×(200+1)

=225×200+225×1

=45000+225

=45225

So, the product is 45225.

     6.    Evaluate using distributive property:

(i)  172×25+172×35

(ii) 159×82+159×16+159×2

(iii)  67×78+67×(−43)+67×(−25)

(iv) 999×99+99

(v) 58×47+94

Solution:

(i)  172×25+172×35

Using the distributive property,

172×(25+35)

= 172×60

= 10320

 

(ii) 159×82+159×16+159×2

Using the distributive property,

159×(82+16+2)

= 159×100

= 15900

(iii) 67×78+67×(−43)+67×(−25)

Using the distributive property,

67×(78+(−43)+(−25))

= 67×(78−43−25)

= 67×10

= 670

(iv) 999×99+99

= 99×(999+1)

= 99×1000

= 99000

(v)   58×47+94

 

We cannot directly apply the distributive property here because the second term does not have a common factor with the first term. Instead, let's compute it directly,

58×47+94

= 2726+94

= 2820

     7.     Justify whether right or wrong:

(i)    (−7) ×15×(−4)=( −7) ×15+(−7) ×(−4)

(ii) (−6)×23×(−2) = (−2)×(−6)×23

(iii) (−5)×{(−3)×2} = {(−5)×( −3)}×2

(iv)  (−175) × (−1) = −175

(v)  (−25) × ( − 4) × 0 = 100

Solution:

(i)  (−7) ×15×(−4)=( −7) ×15+(−7) ×(−4)

LHS: = (−7) ×15×(−4)

             = (−105)×(−4)

          = 420

RHS: = (−7)×15+(−7)×(−4)

          = −105+28

          = −77

Since 420 ≠ −77, the statement is wrong.

(ii)  (−6)×23×(−2) = (−2)×(−6)×23

Both sides are equivalent because of the commutative property of multiplication. Let's compute the product,

(−6) ×23×(−2)=(−6)×(−2)×23

 ⇒ 12×23 = 276

Both sides are indeed equal. So, the statement is right.

(iii)  (−5)×{(−3)×2} = {(−5)×( −3)}×2

LHS: = (−5)×{(−3)×2}

          = (−5) ×(−6)

          = 30

RHS: = {(−5)×(−3)}×2

          = 15×2

          = 30

Both sides are equal, so the statement is right.

(iv)   (−175) × (−1) = −175

Compute the product,

(−175)×(−1)=175

Since  175 ≠ −175, the statement is wrong.

(v)  (−25) × ( − 4) × 0 = 100

Compute the product,

(−25)×(−4)×0=100

Since any number multiplied by zero is zero,

(−25)×(−4)×0=0

Since 0 ≠ 100, the statement is wrong.

 

 

Digital Pipal Academy Verified By

Sudev Chandra Das(B.Sc. Mathematics)

 

 

Our website uses cookies to enhance your experience. Learn More
Accept !