NCERT Solutions for Class 10 Maths Chapter 1 - Real Numbers Exercise 1.1: Detailed Guide for Assam State Board Syllabus 2025-2026 (English Medium)

Sudev Chandra Das

Heading with Bright Purple Background
NCERT Solutions for Class 10 Maths Chapter 1 - Real Numbers Exercise 1.1: Detailed Guide for Assam State Board Syllabus 2025-2026 (English Medium)

NCERT Solutions for Class 10 Maths Chapter 1 Real Numbers Exercise 1.1 – Digital Pipal Academy

Digital Pipal Academy offers concise and easy-to-understand NCERT Solutions for Class 10 Maths Chapter 1, Exercise 1.1, covered under the Assam State Board Syllabus 2025-2026. Our expert faculty provides step-by-step solutions, focusing on Euclid’s Division Algorithm to help students grasp key concepts and solve problems efficiently. Aligned with NCERT guidelines, our solutions ensure thorough exam preparation and help students score better in their exams.

Responsive Table

Real Number Solution Link
Exercise 1.1 (Real Number) Click Here
Exercise 1.2 (Real Number) Click Here
Exercise 1.3 (Real Number) Click Here
Exercise 1.4 (Real Number) Click Here

Get Free NCERT PDFs

If you want to download free PDFs of any chapter from any subject, click the link below and join our WhatsApp group.

(যদি তুমি যিকোনো বিষয়ৰ বিনামূলীয়া PDF ডাউনলোড কৰিব বিচৰা তেন্তে তলৰ লিংকত ক্লিক কৰা আৰু আমাৰ WhatsApp গ্ৰুপটো Join কৰা)

Join Our WhatsApp Group



Exercise 1.1

1. Use Euclid’s division algorithm to find the HCF of:

(i) 135 and 225
(ii) 196 and 38220
(iii) 867 and 255
(iv) 272 and 1032
(v) 405 and 2520
(vi) 155 and 1385
(vii) 384 and 1296
(viii) 1848 and 3058

Solution:

(i) Applying Euclid’s division algorithm on 135 and 225:
225 = 1 × 135 + 90
135 = 1 × 90 + 45
90 = 2 × 45 + 0
HCF (225, 135) = 45

(ii) Applying Euclid’s division algorithm on 196 and 38220:
38220 = 195 × 196 + 0
HCF (38220, 196) = 196

(iii) Applying Euclid’s division algorithm on 867 and 255:
867 = 3 × 255 + 102
255 = 2 × 102 + 51
102 = 2 × 51 + 0
HCF (867, 255) = 51

(iv) Applying Euclid’s division algorithm on 272 and 1032:
1032 = 272 × 3 + 216
272 = 216 × 1 + 56
216 = 56 × 3 + 48
56 = 48 × 1 + 8
48 = 8 × 6 + 0
HCF (272, 1032) = 8

(v) Applying Euclid’s division algorithm on 405 and 2520:
2520 = 405 × 6 + 90
405 = 90 × 4 + 45
90 = 45 × 2 + 0
HCF (405, 2520) = 45

(vi) Applying Euclid’s division algorithm on 155 and 1385:
1385 = 155 × 8 + 145
155 = 145 × 1 + 10
145 = 10 × 14 + 5
10 = 5 × 2 + 0
HCF (155, 1385) = 5

(vii) Applying Euclid’s division algorithm on 384 and 1296:
1296 = 384 × 3 + 144
384 = 144 × 2 + 96
144 = 96 × 1 + 48
96 = 48 × 2 + 0
HCF (384, 1296) = 48

(viii) Applying Euclid’s division algorithm on 1848 and 3058:
3058 = 1848 × 1 + 1210
1848 = 1210 × 1 + 638
1210 = 638 × 1 + 572
638 = 572 × 1 + 66
572 = 66 × 5 + 44
66 = 44 × 1 + 22
44 = 22 × 2 + 0
HCF (1848, 3058) = 22



2. Show that any positive odd integer is of the form 6q+16q + 1, 6q+36q + 3, or 6q+56q + 5, where qq is some integer.

Solution:
Let aa be a positive integer. Applying the division algorithm with divisor b=6b = 6, we get:
a=6q+ra = 6q + r where 0r<60 \leq r < 6, and rr can take values: 0,1,2,3,4,50, 1, 2, 3, 4, 5.

Now:

  • If r=0r = 0, a=6qa = 6q (divisible by 6, even).
  • If r=1r = 1, a=6q+1a = 6q + 1 (odd).
  • If r=2r = 2, a=6q+2a = 6q + 2 (divisible by 2, even).
  • If r=3r = 3, a=6q+3a = 6q + 3 (odd).
  • If r=4r = 4, a=6q+4a = 6q + 4 (divisible by 2, even).
  • If r=5r = 5, a=6q+5a = 6q + 5 (odd).

Thus, positive odd integers are of the form 6q+16q + 1, 6q+36q + 3, or 6q+56q + 5.


3. An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?

Solution:
To find the maximum number of columns, we need to find the HCF of 616616 and 3232 using Euclid's division algorithm:

  1. 616=32×19+8616 = 32 \times 19 + 8
  2. 32=8×4+032 = 8 \times 4 + 0

Thus, HCF(616,32)=8\text{HCF}(616, 32) = 8.

Answer: The maximum number of columns is 8.



4. Use Euclid’s division lemma to show that the square of any positive integer is either of the form 3m3m or 3m+13m + 1, where mm is some integer.

Solution:
Let aa be any positive integer. Using Euclid’s division algorithm, for b=3b = 3, we have:
a=3q+r,  where r=0,1,2.a = 3q + r, \; \text{where } r = 0, 1, 2.

Case 1: When r=0r = 0:
a=3q+0a = 3q + 0
a=3q⇒ a = 3q
a2=(3q)2⇒ a^2 = (3q)^2
a2=9q2⇒ a^2 = 9q^2
a2=3(3q2)⇒ a^2 = 3(3q^2)
a2=3m⇒ a^2 = 3m
[where m=3q2]\text{[where \( m = 3q^2 \)]}

Case 2: When r=1r = 1:
a=3q+1a = 3q + 1
a2=(3q+1)2⇒ a^2 = (3q + 1)^2
a2=(3q)2+2(3q)1+12⇒ a^2 = (3q)^2 + 2 \cdot (3q) \cdot 1 + 1^2
a2=9q2+6q+1⇒ a^2 = 9q^2 + 6q + 1
a2=3(3q2+2q)+1⇒ a^2 = 3(3q^2 + 2q) + 1
a2=3m+1⇒ a^2 = 3m + 1
[where m=3q2+2q]\text{[where \( m = 3q^2 + 2q \)]}

Case 3: When r=2r = 2:
a=3q+2a = 3q + 2
a2=(3q+2)2⇒ a^2 = (3q + 2)^2
a2=(3q)2+2(3q)2+22⇒ a^2 = (3q)^2 + 2 \cdot (3q) \cdot 2 + 2^2
a2=9q2+12q+4⇒ a^2 = 9q^2 + 12q + 4
a2=3(3q2+4q+1)+1⇒ a^2 = 3(3q^2 + 4q + 1) + 1
a2=3m+1⇒ a^2 = 3m + 1
[where m=3q2+4q+1]\text{[where \( m = 3q^2 + 4q + 1 \)]}


Thus, in all cases, the square of any positive integer is either of the form 3m3m or 3m+13m + 1.



5. Use Euclid’s division lemma to show that the cube of any positive integer is of the form 9m9m, 9m+19m + 1, or 9m+89m + 8.


Solution:
Let aa be any positive integer, and b=3b = 3.
Using Euclid's division lemma, we have:

Using Euclid’s division lemma,
a=3q+ra = 3q + r,
where r=0,1,2r = 0, 1, 2.

Case 1: When r=0r = 0:
a=3q+0a = 3q + 0
a=3q⇒ a = 3q
a3=(3q)3⇒ a^3 = (3q)^3
a3=27q3⇒ a^3 = 27q^3
a3=93q3⇒ a^3 = 9 \cdot 3q^3
a3=9m⇒ a^3 = 9m
[where m=3q3]\text{[where \( m = 3q^3 \)]}

Case 2: When r=1r = 1:
a=3q+1a = 3q + 1
a3=(3q+1)3⇒ a^3 = (3q + 1)^3
a3=(3q)3+13+3(3q)1(3q+1)⇒ a^3 = (3q)^3 + 1^3 + 3 \cdot (3q) \cdot 1 \cdot (3q + 1)
a3=27q3+1+9q(3q+1)⇒ a^3 = 27q^3 + 1 + 9q (3q + 1)
a3=27q3+1+27q2+9q⇒ a^3 = 27q^3 + 1 + 27q^2 + 9q
a3=27q3+27q2+9q+1⇒ a^3 = 27q^3 + 27q^2 + 9q + 1
a3=9(3q3+3q2+q)+1⇒ a^3 = 9 (3q^3 + 3q^2 + q) + 1
a3=9m+1⇒ a^3 = 9m + 1
[where m=3q3+3q2+q]\text{[where \( m = 3q^3 + 3q^2 + q \)]}

Case 3: When r=2r = 2:
a=3q+2a = 3q + 2
a3=(3q+2)3⇒ a^3 = (3q + 2)^3
a3=(3q)3+23+3(3q)2(3q+2)⇒ a^3 = (3q)^3 + 2^3 + 3 \cdot (3q) \cdot 2 \cdot (3q + 2)
a3=27q3+8+18q(3q+2)⇒ a^3 = 27q^3 + 8 + 18q (3q + 2)
a3=27q3+8+54q2+36q⇒ a^3 = 27q^3 + 8 + 54q^2 + 36q
a3=27q3+54q2+36q+8⇒ a^3 = 27q^3 + 54q^2 + 36q + 8
a3=9(3q3+6q2+4q)+8⇒ a^3 = 9 (3q^3 + 6q^2 + 4q) + 8
a3=9m+8⇒ a^3 = 9m + 8
[where m=3q3+6q2+4q]\text{[where \( m = 3q^3 + 6q^2 + 4q \)]}


Thus, the cube of any positive integer is of the form 9m9m, 9m+19m + 1, or 9m+89m + 8.



6. Himadri has a collection of 625 Indian postal stamps and 325 International postal stamps. She wants to display them in identical groups of Indian and International stamps with no stamps left out. What is the greatest number of groups Himadri can display?

Solution:
To find the greatest number of groups, we need to find the HCF of 625625 and 325325:

  1. 625=325×1+300625 = 325 \times 1 + 300
  2. 325=300×1+25325 = 300 \times 1 + 25
  3. 300=25×12+0300 = 25 \times 12 + 0

Thus, HCF(625,325)=25\text{HCF}(625, 325) = 25.

Answer: The greatest number of groups is 25.


7. Two ropes are of length 64 cm and 80 cm. Both are to be cut into pieces of equal length. What should be the maximum length of the pieces?

Solution:
To find the maximum length of the pieces, we need to find the HCF of 6464 and 8080:

  1. 80=64×1+1680 = 64 \times 1 + 16
  2. 64=16×4+064 = 16 \times 4 + 0

Thus, HCF(80,64)=16\text{HCF}(80, 64) = 16.

Answer: The maximum length of the pieces is 16 cm.

Note for Users

If you find any incorrect answers, please notify us via Instagram at @pipalacademy or email us at info@pipalacademy.com. For content that may infringe copyright, kindly refrain from copying our content. Thank you for supporting Digital Pipal Academy!

যদি আপুনি কোনো ভুল উত্তৰ পায়, অনুগ্ৰহ কৰি আমাক @pipalacademy ইনষ্টাগ্ৰামৰ জৰিয়তে অৱগত কৰক অথবা info@pipalacademy.com ইমেইলৰ মাধ্যমে আমাক যোগাযোগ কৰক। কপিৰাইট উলংঘা কৰিব পৰা বিষয়বস্তুৰ বাবে, আমাৰ বিষয়বস্তু কপি কৰাৰ পৰা বিৰত থাকক। ডিজিটেল পিপাল একাডেমীক সহায় কৰাৰ বাবে ধন্যবাদ!

Join Our WhatsApp Group


Author Picture

Sudev Chandra Das (B.Sc. Mathematics)

Hi! I'm Sudev Chandra Das, Founder of Digital Pipal Academy. I've dedicated myself to guiding students toward better education. I believe, 'Success comes from preparation, hard work, and learning from failure.' Let’s embark on a journey of growth and digital excellence together!.

 

For Pdf solutions Click www.pipalacademy.com

Our website uses cookies to enhance your experience. Learn More
Accept !